Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(12): e0278641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584181

RESUMO

Advances in tracking technology have helped elucidate the movements of the planet's largest and most mobile species, but these animals do not represent faunal diversity as a whole. Tracking a more diverse array of animal species will enable testing of broad ecological and evolutionary hypotheses and aid conservation efforts. Small and sedentary species of the tropics make up a huge part of earth's animal diversity and are therefore key to this endeavor. Here, we investigated whether modern satellite tracking is a viable means for measuring the fine-scale movement patterns of such animals. We fitted five-gram solar-powered transmitters to resident songbirds in the rainforests of New Guinea, and analyzed transmission data collected over four years to evaluate movement detection and performance over time. Based upon the distribution of location fixes, and an observed home range shift by one individual, there is excellent potential to detect small movements of a few kilometers. The method also has clear limitations: total transmission periods were often short and punctuated by lapses; precision and accuracy of location fixes was limited and variable between study sites. However, impending reductions in transmitter size and price will alleviate many issues, further expanding options for tracking earth's faunal diversity.


Assuntos
Aves Canoras , Animais , Florestas , Comportamento de Retorno ao Território Vital , Floresta Úmida , Nova Guiné , Ecossistema
2.
Ecol Evol ; 12(2): e8497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222943

RESUMO

Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian-haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host-parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host-parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian-haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three-dimensional spatial analyses of avian-haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community-level infections are primarily driven by host community composition.

3.
Nat Commun ; 13(1): 268, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022441

RESUMO

Tropical mountains harbor exceptional concentrations of Earth's biodiversity. In topographically complex landscapes, montane species typically inhabit multiple mountainous regions, but are absent in intervening lowland environments. Here we report a comparative analysis of genome-wide DNA polymorphism data for population pairs from eighteen Indo-Pacific bird species from the Moluccan islands of Buru and Seram and from across the island of New Guinea. We test how barrier strength and relative elevational distribution predict population differentiation, rates of historical gene flow, and changes in effective population sizes through time. We find population differentiation to be consistently and positively correlated with barrier strength and a species' altitudinal floor. Additionally, we find that Pleistocene climate oscillations have had a dramatic influence on the demographics of all species but were most pronounced in regions of smaller geographic area. Surprisingly, even the most divergent taxon pairs at the highest elevations experience gene flow across barriers, implying that dispersal between montane regions is important for the formation of montane assemblages.


Assuntos
Biodiversidade , Aves/genética , Genética Populacional , Animais , Clima , Fluxo Gênico , Geografia , Nova Guiné , Filogeografia , Polimorfismo Genético , Densidade Demográfica
4.
Oecologia ; 196(1): 101-113, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33950380

RESUMO

While there are numerous studies of diversity patterns both within local communities and at regional scales, the intermediate scale of tens to thousands of km2 is often neglected. Here we present detailed local data on plant communities (using 20 × 20 m plots) and bird communities (using point counts) for a 50 ha ForestGEO plot in lowland rainforest at Wanang, Papua New Guinea. We compare these local diversity patterns with those documented in the surrounding 10,000 ha of lowland rainforest. Woody plant species richness was lower within 50 ha (88% of 10,000 ha richness), even when both were surveyed with identical sampling effort. In contrast, bird communities exhibited identical species accumulation patterns at both spatial scales. Similarity in species composition (Chao-Jaccard) remained constant while similarity in dominance structure (Bray-Curtis) decreased with increased distance between samples across the range from < 1 to 13.8 km for both plant and bird communities. The similarity decay was more rapid in plants, but in both cases was slow. The results indicate low to zero beta-diversity at the spatial scale represented here, particularly for birds but also for woody plants. A 50 ha plot provided a highly accurate representation of broader-scale diversity and community composition within 10,000 ha for birds, and a relatively good representation for woody plants. This suggests potential for wider generalization of data from ForestGEO plots which are almost always locally unreplicated, at least for those in lowland tropical forest.


Assuntos
Biodiversidade , Floresta Úmida , Animais , Aves , Ecossistema , Florestas , Plantas , Árvores , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...